CARCINOMA OF RENAL TUBULAR ORIGIN (excision specimens) STRUCTURED REPORTING PROTOCOL

(2nd Edition 2018)

Incorporating the International Collaboration on Cancer Reporting (ICCR) Dataset for the reporting of Invasive Carcinoma of Renal Tubular Origin

www.ICCR-Cancer.org
Core Document versions:

1. ICCR Dataset for the Reporting of Invasive Carcinoma of Renal Tubular Origin 1st edition v1.1
2. AJCC Cancer Staging Manual 8th edition
Online copyright

© RCPA 2017

This work (Protocol) is copyright. You may download, display, print and reproduce the Protocol for your personal, non-commercial use or use within your organisation subject to the following terms and conditions:

1. The Protocol may not be copied, reproduced, communicated or displayed, in whole or in part, for profit or commercial gain.

2. Any copy, reproduction or communication must include this RCPA copyright notice in full.

3. With the exception of Chapter 6 - the checklist, no changes may be made to the wording of the Protocol including any Standards, Guidelines, commentary, tables or diagrams. Excerpts from the Protocol may be used in support of the checklist. References and acknowledgments must be maintained in any reproduction or copy in full or part of the Protocol.

4. In regard to Chapter 6 of the Protocol - the checklist:
 - The wording of the Standards may not be altered in any way and must be included as part of the checklist.
 - Guidelines are optional and those which are deemed not applicable may be removed.
 - Numbering of Standards and Guidelines must be retained in the checklist, but can be reduced in size, moved to the end of the checklist item or greyed out or other means to minimise the visual impact.
 - Additional items for local use may be added but must not be numbered as a Standard or Guideline, in order to avoid confusion with the RCPA checklist items.
 - Formatting changes in regard to font, spacing, tabulation and sequencing may be made.
 - Commentary from the Protocol may be added or hyperlinked to the relevant checklist item.

Apart from any use as permitted under the Copyright Act 1968 or as set out above, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to RCPA, 207 Albion St, Surry Hills, NSW 2010, Australia.

First published: July 2018, 2nd Edition (version 2.0)
Disclaimer

The Royal College of Pathologists of Australasia ("College") has developed these protocols as an educational tool to assist pathologists in reporting of relevant information for specific cancers. Each protocol includes "standards" and "guidelines" which are indicators of ‘minimum requirements’ and ‘recommendations’, which reflect the opinion of the relevant expert authoring groups. The use of these standards and guidelines is subject to the clinician’s judgement in each individual case.

The College makes all reasonable efforts to ensure the quality and accuracy of the protocols and to update the protocols regularly. However subject to any warranties, terms or conditions which may be implied by law and which cannot be excluded, the protocols are provided on an "as is" basis. The College does not warrant or represent that the protocols are complete, accurate, error-free, or up to date. The protocols do not constitute medical or professional advice. Users should obtain appropriate medical or professional advice, or where appropriately qualified, exercise their own professional judgement relevant to their own particular circumstances. Users are responsible for evaluating the suitability, accuracy, currency, completeness and fitness for purpose of the protocols.

Except as set out in this paragraph, the College excludes: (i) all warranties, terms and conditions relating in any way to; and (ii) all liability (including for negligence) in respect of any loss or damage (including direct, special, indirect or consequential loss or damage, loss of revenue, loss of expectation, unavailability of systems, loss of data, personal injury or property damage) arising in any way from or in connection with; the protocols or any use thereof. Where any statute implies any term, condition or warranty in connection with the provision or use of the protocols, and that statute prohibits the exclusion of that term, condition or warranty, then such term, condition or warranty is not excluded. To the extent permitted by law, the College’s liability under or for breach of any such term, condition or warranty is limited to the resupply or replacement of services or goods.
Scope

This protocol contains standards and guidelines for the preparation of structured reports for excision specimens of the kidneys. Urothelial carcinoma arising from the upper renal tract, Wilms tumours and other nephroblastic and mesenchymal tumours are not included.

The protocol is designed for the reporting of specimens of single laterality ie left or right. If bilateral tumours are submitted then separate datasets should be completed. If the tumour is multifocal due to intra-renal spread then a single form should be used. However, if two or more synchronous malignancies are present (usually identified by the presence of differing morphologies) then a separate form should be used for each tumour.

Structured reporting aims to improve the completeness and usability of pathology reports for clinicians, and improve decision support for cancer treatment. The protocol provides the framework for the reporting of renal cancer, whether as a minimum data set or fully comprehensive report.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJCC</td>
<td>American Joint Committee on Cancer</td>
</tr>
<tr>
<td>ALK</td>
<td>anaplastic lymphoma kinase</td>
</tr>
<tr>
<td>ccRCC</td>
<td>clear cell renal cell carcinoma</td>
</tr>
<tr>
<td>CG</td>
<td>Commentary for a guideline</td>
</tr>
<tr>
<td>CS</td>
<td>Commentary for a standard</td>
</tr>
<tr>
<td>FISH</td>
<td>Fluorescent in-situ hybridization</td>
</tr>
<tr>
<td>HLRCC</td>
<td>hereditary leiomyomatosis and renal cell carcinoma associated renal cell carcinoma</td>
</tr>
<tr>
<td>ICCR</td>
<td>International Collaboration on Cancer Reporting</td>
</tr>
<tr>
<td>ISUP</td>
<td>International Society of Urological Pathology</td>
</tr>
<tr>
<td>LIS</td>
<td>laboratory information system</td>
</tr>
<tr>
<td>LVI</td>
<td>lymphovascular invasion</td>
</tr>
<tr>
<td>PBS</td>
<td>Pharmaceutical Benefits Scheme</td>
</tr>
<tr>
<td>RCC</td>
<td>Renal cell carcinoma</td>
</tr>
<tr>
<td>RCPA</td>
<td>Royal College of Pathologists of Australasia</td>
</tr>
<tr>
<td>TNM</td>
<td>tumour-node-metastasis</td>
</tr>
<tr>
<td>UICC</td>
<td>International Union Against Cancer</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Definitions

The table below provides definitions for general or technical terms used in this protocol. Readers should take particular note of the definitions for 'standard', 'guideline' and 'commentary', because these form the basis of the protocol.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancillary study</td>
<td>An ancillary study is any pathology investigation that may form part of a cancer pathology report but is not part of routine histological assessment.</td>
</tr>
<tr>
<td>Clinical information</td>
<td>Patient information required to inform pathological assessment, usually provided with the specimen request form, also referred to as “pre-test information”.</td>
</tr>
</tbody>
</table>
| **Commentary** | Commentary is text, diagrams or photographs that clarify the standards (see below) and guidelines (see below), provide examples and help with interpretation, where necessary (not every standard or guideline has commentary). Commentary is used to:
 - define the way an item should be reported, to foster reproducibility
 - explain why an item is included (e.g. how does the item assist with clinical management or prognosis of the specific cancer).
 - cite published evidence in support of the standard or guideline
 - state any exceptions to a standard or guideline. In this document, commentary is prefixed with ‘CS’ (for commentary on a standard) or ‘CG’ (for commentary on a guideline), numbered to be consistent with the relevant standard or guideline, and with sequential alphabetic lettering within each set of commentaries (e.g. CS1.01a, CG2.05b). |
| **General commentary** | General commentary is text that is not associated with a specific standard or guideline. It is used:
 - to provide a brief introduction to a chapter, if necessary
 - for items that are not standards or guidelines but are included in the protocol as items of potential importance, for which there is currently insufficient evidence to recommend their inclusion. (Note: in future reviews of protocols, such items may be reclassified as either standards or guidelines, in line with diagnostic and prognostic advances, following evidentiary review). |
Guideline

Guidelines are recommendations; they are not mandatory, as indicated by the use of the word 'should'. Guidelines cover items that are unanimously agreed should be included in the dataset but are not supported by NHMRC level III-2 evidence. These elements may be clinically important and recommended as good practice but are not yet validated or regularly used in patient management.

Guidelines include key information other than that which is essential for clinical management, staging or prognosis of the cancer such as macroscopic observations and interpretation, which are fundamental to the histological diagnosis and conclusion eg macroscopic tumour details, block identification key, may be included as either required or recommended elements by consensus of the expert committee. Such findings are essential from a clinical governance perspective, because they provide a clear, evidentiary decision-making trail.

Guidelines are not used for research items.

In this document, guidelines are prefixed with 'G' and numbered consecutively within each chapter (eg G1.10).

Macroscopic findings

Measurements, or assessment of a biopsy specimen, made by the unaided eye.

Microscopic findings

In this document, the term 'microscopic findings' refers to histomorphological assessment.

Predictive factor

A predictive factor is a measurement that is associated with response or lack of response to a particular therapy.

Prognostic factor

A prognostic factor is a measurement that is associated with clinical outcome in the absence of therapy or with the application of a standard therapy. It can be thought of as a measure of the natural history of the disease.

Standard

Standards are mandatory, as indicated by the use of the term 'must'. Standards are essential for the clinical management, staging or prognosis of the cancer. These elements will either have evidentiary support at Level III-2 or above (based on prognostic factors in the NHMRC levels of evidence document). In rare circumstances, where level III-2 evidence is not available an element may be made a Standard where there is unanimous agreement in the expert committee. An appropriate staging system eg Pathological TNM staging would normally be included as a required element. These elements must be recorded and at the discretion of the pathologist included in the pathology report according to the needs of the recipient of the report.

The summation of all standards represents the minimum dataset for the cancer.

In this document, standards are prefixed with 'S' and numbered consecutively within each chapter (eg S1.02).
<table>
<thead>
<tr>
<th>Structured report</th>
<th>A report format which utilises standard headings, definitions and nomenclature with required information.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synoptic report</td>
<td>A structured report in condensed form (as a synopsis or precis).</td>
</tr>
</tbody>
</table>
| Synthesis | Synthesis is the process in which two or more pre-existing elements are combined, resulting in the formation of something new.

The Oxford dictionary defines synthesis as “the combination of components or elements to form a connected whole”.

In the context of structured pathology reporting, synthesis represents the integration and interpretation of information from two or more modalities to derive new information.
Introduction

Renal Parenchymal Malignancy (Renal Cell Carcinoma)

Renal cell carcinoma was not described in antiquity, with the first confirmed case of RCC being reported in France in 1810. The first classification of renal neoplasia was produced in 1824 and since then a variety of classifications have been proposed. Despite these early attempts to classify RCC, it is only in the last two decades that there has been any real appreciation as to the wide variety of morphotypes of RCC that exist.

In the first edition of the WHO classification, published in 1981, epithelial malignancies of the renal parenchyma were classified as Renal Cell Carcinoma and Other. The publication of the Mainz Classification in 1986 and the work of the Heidelberg (1996) and Rochester (1997) Consensus Groups provided the basis for classifying RCC into a variety of sub-types, each with differing clinical, histological and genetic features. These conclusions were reinforced by the third WHO classification working group who met in 2002, with the final classification being released in 2004. In this classification ten distinctive sub-types of renal parenchymal neoplasia were recognized, with a further category – that of Renal Cell Carcinoma – Unclassified being reserved for those tumours whose features differ from those of the recognized in the 2004 classification. It is from the group of tumours classified as Renal Cell Carcinoma – Unclassified that several novel variants of renal epithelial malignancy have been identified and since the publication of the 2004 WHO Classification, a further six tumour sub-types have been recognized. The classification of RCC was expanded in the ISUP Vancouver classification published in 2014, and in the 2016 4th edition of the WHO classification.

The failure to appreciate from the outset that RCC is a group of tumours rather than a single tumour entity, has had a major impact upon outcome prediction for these forms of malignancy. In particular, the failure to identify tumour sub-type in data sets has served to introduced an uncontrolled variable into statistical analyses and this has served to undermine the credibility of numerous prognostic studies.

More recently major studies have validated the sub-classification of RCC on the basis of tumour-related outcome data. These studies have also attempted to identify prognostic parameters for each sub-type of RCC and specifically, there has been considerable emphasis on the evaluation of the predictive importance of tumour stage and grade. This is of particular importance as RCCs as a group have a considerable morbidity and mortality accounting for 2% of cancer deaths worldwide. In the United States, the annual incidence of renal cell carcinoma has increased by 46.9% over the past 17 years rising from 27,200 cases in 1990 to an estimated 63,990 cases in 2017. In Australia, in 2017 the estimated age adjusted incidence of RCC is 12 cases per 100,000 while in New Zealand the incidence was 8.1 cases per 100,000 in 2013.

Importance of histopathological reporting

Information derived from the careful assessment and dissection of the gross specimen, the judicious selection of tissues for histological examination and the
The provision of a pathology report that contains information of both clinical and prognostic utility is central to contemporary medical practice.

The information contained within pathology reports on specimens removed for the management of RCC provide guidance for further treatment options and permit assessment of outcome.

It is recognized that some morphotypes of RCC have a less aggressive clinical course than others and as a consequence consideration may be given to undertaking further surgical interventions if a patient subsequently develops metastatic disease. Further, for those patients who have disease that is found to be incurable following surgery, a variety of chemotherapeutic options are available, and current protocols relate to specific tumour sub-types. For both of these scenarios it is clear that subsequent management is informed by the pathology report that details the morphology of the primary tumour.

It is well recognized that the most important single prognostic parameter for RCC is tumour stage. Information regarding the completeness of surgical excision and involvement of anatomic boundaries by tumour is essential for staging purposes. Evaluation of other features contained with a standard report for RCC, such as tumour grade relating to specific morphotypes of RCC, the presence of sarcomatoid or rhabdoid differentiation, and the presence and degree of tumour necrosis provide information that is essential for determining prognosis in individual cases.

Benefits of structured reporting

The pathology report lays the foundation for a patient’s cancer journey and conveys information which:

- Provides the definitive diagnosis
- Includes critical information for Tumour-Node-Metastasis (TNM) staging
- Evaluates the adequacy of the surgical excision
- Provides morphological and biological prognostic markers which determine personalised cancer therapy

However, the rapid growth in ancillary testing such as immunohistochemistry, flow cytometry, cytogenetics, and molecular studies, have made the task of keeping abreast of advances on specific cancer investigations extremely difficult for pathologists. The use of structured reporting checklists by pathologists ensures that all key elements are included in the report specifically those which have clinical management, staging or prognostic implications. Consequently minimum or comprehensive datasets for the reporting of cancer have been developed20,21 around the world. Both the United Kingdom,22 and United States23 have produced standardised cancer reporting protocols or "datasets" for national use for many years.

The use of cancer reporting checklists improves completeness and quality of cancer reporting and thereby ensures an improved outcome for cancer patients. This has long term cost implications for public health by ensuring the most effective and timely treatment based on accurate and complete information.

The use of a structured reporting format also facilitates easy extraction of the necessary information by secondary users of the information ie cancer registries.
International Collaboration on Cancer Reporting

The International Collaboration on Cancer Reporting (ICCR), founded in 2011 by the Australasian (RCPA), US (CAP) and UK (RCPPath) Colleges of Pathology and the Canadian Association of Pathology (CAP-ACP) in association with the Canadian Partnership Against Cancer (CPAC), was established to explore the possibilities of a collaborative approach to the development of common, internationally standardised and evidence-based cancer reporting protocols for surgical pathology specimens.

The ICCR, recognising that standardised cancer datasets have been shown to provide significant benefits for patients and efficiencies for organisations through the ease and completeness of data capture24-27 undertook to use the best international approaches and the knowledge and experience of expert pathologists, and produce cancer datasets which would ensure that cancer reports across the world will be of the same high quality – ensuring completeness, consistency, clarity, conciseness and above all, clinical utility.

Representatives from the four countries participating in the initial collaboration undertook a pilot project in 2011 to develop four cancer datasets - Lung, Melanoma, Prostate (Radical Prostatectomy), and Endometrium. Following on from the success of this pilot project, the ICCR was joined by the European Society of Pathology (ESP) in 2013 and in 2014 incorporated a not-for-profit organisation focussed on the development of internationally agreed evidence-based datasets developed by world leading experts. The ICCR Datasets are made freely available from its website \url{www.ICCR-Cancer.org}

Design of this protocol

This structured reporting protocol has been developed incorporating the ICCR dataset on renal cancer (excision specimens) as the foundation.

This protocol includes all of the ICCR cancer dataset elements as well as additional information, elements and commentary as agreed by the RCPA expert committee. It provides a comprehensive framework for the assessment and documentation of pathological features of renal cancer in excision specimens.

ICCR dataset elements for renal cancer in excision specimens are included verbatim. ICCR Required elements are mandatory and therefore represented as standards in this document. ICCR Recommended elements, that is, those which are not mandatory but are recommended, may be included as guidelines or upgraded to a standard based on the consensus opinion of the local expert committee.

The ICCR elements are identified in each chapter with the ICCR logo placed before the Standard or Guideline number or bullet and the ICCR element description and commentary is boarded by a grey box as shown below:

| ICCR | G3.02 | The intraglandular extent should be recorded as a percentage. |
Additional commentary by the RCPA expert committee may be added to an ICCR element but is not included in the grey bordered area nor indicated with an ICCR logo eg

<table>
<thead>
<tr>
<th>ICCR G2.03</th>
<th>If present, the laterality of the lymph nodes submitted may be recorded as left, right or bilateral.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS2.03a</td>
<td>If present, record site and number. All lymph node tissue should be submitted for histological examination.</td>
</tr>
</tbody>
</table>

Further information on the ICCR is available at www.iccr-cancer.org

Checklist

Consistency and speed of reporting is improved by the use of discrete data elements recorded from the checklist. Items suited to tick boxes are distinguished from more complex elements requiring free text or narrative. A structured or discrete approach to responses is favoured, however the pathologist is encouraged to include free text or narrative where necessary to document any other relevant issues, to give reasons for coming to a particular opinion and to explain any points of uncertainty.

Report format

The structure provided by the following chapters, headings and subheadings describes the elements of information and their groupings, but does not necessarily represent the format of either a pathology report (Chapter 7) or checklist (Chapter 6). These, and the structured pathology request form (Appendix 1) are templates that represent information from this protocol, organised and formatted differently to suit different purposes.

Key documentation

- *Guidelines for Authors of Structured Cancer Pathology Reporting Protocols, Royal College of Pathologists of Australasia, 2009*²⁸
- *AJCC Cancer Staging Manual, 8th edition, American Joint Committee on Cancer, 2016*²⁹

Updates since last edition

Inclusion of ICCR agreed REQUIRED and RECOMMENDED elements.
Authority and development

This section provides information about the process undertaken to develop this protocol.

This 2nd edition of the protocol is an amalgam of two separate processes:

1. This protocol is based on the ICCR Dataset for the Reporting of Invasive Carcinoma of Renal Tubular Origin 1st edition. All ICCR elements from this dataset, both required (mandatory) and recommended (optional), are included in this protocol, verbatim. (It should be noted that RCPA feedback from all Anatomical Pathology fellows and specifically the local expert committee was sought during the development process of the ICCR dataset.) Details of the ICCR development process and the international expert authoring committee responsible for the ICCR dataset are available on the ICCR website: iccr-cancer.org.

2. Additional elements, values and commentary have been included as deemed necessary by the local expert committee. In addition, the standard inclusions of RCPA protocols eg example reports, request information etc, have also been added.

Authorship - 2nd edition

Professor Brett Delahunt (Lead author), Pathologist
Dr David Clouston, Pathologist
Adjunct Professor Warick Delprado, Pathologist
Dr Anne O’Donnell, Medical Oncologist
Clinical Professor James Kench, Pathologist
Professor Hemamali Samaratunga, Pathologist
Dr Simon Wood, Urologist

Authorship – 1st edition (2011)

Professor Brett Delahunt (Lead author), Pathologist
Dr Adrian Charles, Paediatric Pathologist
Dr David Clouston, Pathologist
Adjunct Professor Warick Delprado, Pathologist
Dr Anne O’Donnell, Medical Oncologist
Dr Thomas Eade, Radiation Oncologist
Professor James Kench, Pathologist
Dr Howard Lau, Urologist
Associate Professor Hemamali Samaratunga, Pathologist
Editorial manager

Meagan Judge, Royal College of Pathologists of Australasia.

Acknowledgements

The Kidney cancer expert committee wish to thank all the pathologists and clinicians who contributed to the discussion around this document.
Stakeholders

ACT Health
ACT Cancer Registry
Australian Cancer Network
Australian Commission on Safety and Quality in Health Care
Australian Digital Health Agency
Australian Institute of Health and Welfare
Cancer Australia
Cancer Council ACT
Cancer Council Queensland
Cancer Council Victoria
Cancer Council Western Australia
Cancer Institute NSW
Cancer Services Advisory Committee (CanSAC)
Cancer Voices NSW
Clinical Oncology Society of Australia (COSA)
Department of Health, Australia
Department of Health, New Zealand
Faculty of Radiation Oncology Genito-Urinary Group (FROGG)
Health Informatics Society of Australia (HISA)
Independent Review Group of Pathologists
Medical Software Industry Association (MSIA)
National Pathology Accreditation Advisory Council (NPAAC)
New Zealand Cancer Registry
Northern Territory Cancer Registry
Pathology Australia
Public Pathology Australia
Queensland Cooperative Oncology Group (QCOG)
RCPA Anatomical Pathology Advisory Committee (APAC)
Representatives from laboratories specialising in anatomical pathology across Australia
Royal Australasian College of Physicians (RACP)
South Australia Cancer Registry
Standards Australia
Tasmanian Cancer Registry
The Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP)
The Medical Oncology Group of Australia
The Prostate Cancer Foundation of Australia (PCFA)
The Prostate Cancer Foundation of New Zealand (PCFNZ)
The Royal Australasian College of Surgeons (RACS)
The Royal Australian and New Zealand College of Radiologists (RANZCR)
The Royal Australian College of General Practitioners (RACGP)
The Royal College of Pathologists of Australasia (RCPA)
The Urological Society of Australia And New Zealand (USANZ)
Western Australia Clinical Oncology Group (WACOG)

Development process

This protocol has been developed following the ten-step process set out in *Guidelines for Authors of Structured Cancer Pathology Reporting Protocols.*

Where no reference is provided, the authority is the consensus of the local expert group for local inclusions and the ICCR Dataset Authoring Committee for ICCR components denoted with the ICCR logo.
1 Pre-analytical

This chapter relates to information that should be recorded on receipt of the specimen in the laboratory.

The pathologist is reliant on the quality of information received from the clinicians or requestor. Some of this information may be received in generic pathology request forms, however, the additional information required by the pathologist specifically for the reporting of renal cancer is outlined in Appendix 1. Appendix 1 also includes a standardised request information sheet that may be useful in obtaining all relevant information from the requestor.

Surgical handling procedures affect the quality of the specimen and recommendations for appropriate surgical handling are included in Appendix 1.

S1.01 All demographic information provided on the request form and with the specimen must be recorded.

CS1.01a The Royal College of Pathologists of Australasia (RCPA) The Pathology Request-Test-Report Cycle — Guidelines for Requesters and Pathology Providers must be adhered to. This document specifies the minimum information to be provided by the requesting clinician for any pathology test.

CS1.01b Whether or not the patient identifies as Aboriginal and/or Torres Strait Islander. This is in support of a government initiative to monitor the health of indigenous Australians particularly in relation to cancer.

CS1.01c The patient’s health identifiers may include the patient’s Medical Record Number as well as a national health number such as a patient’s Individual Healthcare Identifier (IHI) (Australia) or the National Healthcare Identifier (New Zealand).

S1.02 All clinical information as documented on the request form must be recorded verbatim.

CS1.02a The request information may be recorded as a single text (narrative) field or it may be recorded in a structured format.

CS1.02b The copy doctors requested on the request form must be recorded.

S1.03 The pathology accession number of the specimen must be recorded.

S1.04 The principal clinician involved in the patient’s care and responsible for investigating the patient must be recorded.

CS1.04a The principal clinician can provide key information regarding the clinical presentation of the patient. Follow up may be
required with the principle clinician for a number of reasons:

- The clinical assessment and staging may be incomplete at the time of biopsy.

- The pathology request is often authored by the clinician performing the surgical excision/biopsy rather than the clinician who is investigating and managing the patient.

- The identity of this clinician is often not indicated on the pathology request form

In practice therefore, it is important in such cases that the reporting pathologist should be able to communicate with the managing clinician for clarification.

CS1.04b The Australian Healthcare identifiers i.e. Healthcare Provider Identifier - Individual (HPI-I) and Healthcare Provider Identifier - Organisation (HPI-O) should be included, where possible, to identify the principal clinician involved in the patient's care.

G1.01 Any clinical information received in other communications from the requestor or other clinician should be recorded together with the source of that information.
2 Specimen handling and macroscopic findings

This chapter relates to the procedures required after the information has been handed over from the requesting clinician, and the specimen has been received in the laboratory.

Tissue banking

➢ Pathologists may be asked to provide tissue samples from fresh specimens for tissue banking or research purposes. The decision to provide tissue should only be made if the pathologist is sure that the diagnostic process will not be compromised. As a safeguard, research use of the tissue samples may be put on hold until the diagnostic process is complete.

Specimen handling

➢ Detailed fixation and specimen handling instructions are available from the RCPA online Cut-up Manual:

www.rcpa.edu.au/Library/Practising-Pathology/Macroscopic-Cut-Up

Macroscopic findings

S2.01 The labelling of the specimen(s) must be clearly recorded.

G2.01 The nature of the specimen at the time of reception should be given.

CG2.01a Choose from fresh or fixed (identify fixative), intact or morcellated.

<table>
<thead>
<tr>
<th>S2.02</th>
<th>Laterity of the specimen must be recorded.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS2.02a</td>
<td>Specimen laterality information is needed for identification and specimen orientation and patient safety purposes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S2.03</th>
<th>The operative procedure must be recorded.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS2.03a</td>
<td>The type of surgical procedure is important in determining the assessment of surgical margins. Specifically in the case of partial nephrectomy specimens it is important that the intra-renal surgical margin be carefully evaluated so as to ensure that no residual tumour is present in the remaining kidney.</td>
</tr>
</tbody>
</table>

A radical nephrectomy specimen is defined as a resection.
of Gerota’s fascia and its entire contents including the kidney, perinephric fat and lymphatics and a length of ureter, and may or may not be accompanied by the adrenal gland. This is the principle treatment for neoplasia.

A simple nephrectomy is the removal of a kidney only with a portion of ureter. This is primarily utilised for removal of non-tumorous kidney.

A partial nephrectomy specimen may vary from a simple enucleation of the tumour to part of a kidney containing variable portions of calyceal or renal pelvic collecting system.

<table>
<thead>
<tr>
<th>S2.04</th>
<th>Any accompanying or attached structures must be recorded.</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2.02</td>
<td>Whether or not tissue has been removed from the specimen prior to submission should be recorded.</td>
</tr>
<tr>
<td>CG2.02a</td>
<td>Pathologic evaluation requires a detailed examination of the complete surgical specimen. If tissue has been removed prior to examination this could compromise diagnosis, staging and prognostic assessment.</td>
</tr>
</tbody>
</table>

G2.03 The kidney should be measured in 3 dimensions.

G2.04 The lengths of the renal vein, renal artery and ureter should be measured.

G2.05 The specimen should be weighed.

G2.06 Evidence of adherence of renal capsule to visceral surface of perirenal fat should be recorded.

CG2.06a If there is any degree of adherence of the renal capsule to the visceral surface of the perirenal fat as this is evidence of co-existing renal pathology.

G2.07 Any abnormalities of the cortical surface should be recorded.

G2.08 The site(s) of tumour in the kidney should be described.

CG2.08a The position of the tumour in relation to the boundaries of the kidney and the surgical resection margin for radical nephrectomy and partial nephrectomy specimens is important for staging purposes. The position of the tumour in relation to the renal cortex or medulla may also have diagnostic importance. This is especially important for small tumours where a site of origin within the medulla would support a diagnosis of collecting duct carcinoma or medullary carcinoma.
Locations of medulla and renal cortex should be mentioned under ‘other (specify)’.

<table>
<thead>
<tr>
<th>Location</th>
<th>Tumour focality ie the number of tumours must be recorded.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS2.05a</td>
<td>Renal cell carcinomas are usually solitary, however, if multifocal tumours are present, this is important to record. Carcinomas in the setting of acquired cystic kidney disease are often multiple. Multiple tumours may also be a clue that one may be dealing with hereditary renal cell carcinoma. Von Hippel Lindau, Birt-Hogg-Dubé and hereditary papillary carcinoma syndromes are characteristically associated with multiple tumours. In a case of multiple carcinomas, it is important to record the diagnostic and prognostic parameters associated with the most significant tumours (largest, highest pT-category, highest grade). The histological subtype of the tumours may be similar or different and occasionally diverse morpho-types may be found. When numerous carcinomas are present some authors have suggested that the details of the 5 largest tumours should be recorded.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>The maximum dimension of the tumour must be recorded.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS2.06a</td>
<td>The maximum dimension of the tumour is required for staging purposes as it constitutes the defining feature of the pT1 and pT2 categories of the TNM staging classification. Further it has been shown that for clear cell renal cell carcinoma tumour size correlates with outcome as a continuous variable. Measurement of tumour size should be undertaken following detailed dissection of the gross specimen and the greatest dimension should be recorded. Tumour extending into extracapsular tissue and/or the renal sinus, in continuity with the primary tumour intra-renal should be included in the measurement. Tumour within the real vein should not be included in this measurement. If multiple tumours are present the greatest dimension of the five largest tumours should be recorded.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>The macroscopic extent of invasion must be recorded.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS2.07a</td>
<td>The identification of tumour directly infiltrating the renal sinus or large vessels has prognostic significance and this information is required for staging purposes.</td>
</tr>
<tr>
<td>CS2.07b</td>
<td>Tumour involvement of the adrenal gland (either direct from the kidney of by metastatic spread) is associated with a poor prognosis and needs to be documented for staging purposes.</td>
</tr>
</tbody>
</table>
G2.09 The appearance of the cut surface of the tumour should be described.

CG2.09a Whether the tumour is solid or cystic should be recorded.

CG2.09b Macroscopic evidence of tumour necrosis should be given. The presence of necrosis within RCC has prognostic significance for clear cell renal cell carcinoma and chromophobe renal cell carcinoma but not for papillary renal cell carcinoma.\(^{35}\)

CG2.09c The colour of the tumour should be given. Variegated tumours with yellow areas are often rich in fat and this appearance is most frequently seen in a clear cell renal cell carcinoma. Chromophobe renal cell carcinomas and sarcomatoid carcinomas are often pale.\(^{7}\)

CG2.09d The consistency of the tumour should be provided. Sarcomatoid carcinomas are often firm while papillary renal cell carcinomas usually have a friable consistency.\(^{36}\)

G2.10 Any abnormal features of the kidney should be recorded.

<table>
<thead>
<tr>
<th>S2.08</th>
<th>A block identification key listing the nature and origin of all tissue blocks must be recorded.</th>
</tr>
</thead>
</table>

G2.11 A descriptive or narrative field should be provided to record any macroscopic information that is not recorded in the above standards and guidelines, and that would normally form part of the macroscopic description.

CG2.11a The traditional macroscopic narrative recorded at the time of specimen dissection is often reported separately from the cancer dataset. Although this remains an option, it is recommended that macroscopic information be recorded within the overall structure of this protocol.

CG2.11b Much of the information recorded in a traditional macroscopic narrative is covered in the standards and guidelines above and in many cases, no further description is required.

CG2.11c A traditional macroscopic description may be required when the Laboratory Information System (LIS) does not allow a structured approach.

CG2.11d Where the LIS offers an electronic interface for structured data entry the need for narrative can be significantly reduced to describe only information not otherwise captured.
3 Microscopic findings

Microscopic findings relates to purely histological (morphological) assessment. Information derived from multiple investigational modalities, or from two or more chapters, is described in Chapter 5.

<table>
<thead>
<tr>
<th>S3.01</th>
<th>The histological tumour type must be recorded (refer to Appendix 4).</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS3.01a</td>
<td>Many of the various sub-types of renal epithelial neoplasia exhibit differing clinical behaviour and prognosis. This has been confirmed in large single and multicentre studies for the main tumour sub-types. Several series have also clearly demonstrated that many of the newly described entities of renal malignancy have a prognosis that differs from that of clear cell renal cell carcinoma. In addition to this protocols for the various types of adjuvant anti-angiogenic therapy relate to specific tumour sub-types. The 2013 International Society of Urological Pathology (ISUP) Vancouver Classification of adult renal tumours identified an emerging/provisional category of renal cell carcinoma (RCC). While appearing distinctive, these rare tumours had not been fully characterized by morphology, immunohistochemistry and molecular studies. This category was also included in the fourth edition of the World Health Organization (WHO) classification of renal neoplasia. In the WHO classification oncocytoid RCC post-neuroblastoma, thyroid-like follicular RCC, anaplastic lymphoma kinase (ALK) rearrangement-associated RCC, RCC with (angio) leiomyomatous stroma, eosinophilic solid and cystic clear cell renal cell carcinoma, and biphasic squamoid and alveolar renal cell carcinoma are included in this category. These entities should be classified under ‘other’ with the name specified. Papillary RCC has traditionally been subdivided into Type 1 and Type 2. Recent studies have shown these tumours to be clinically and biologically distinct. Type 1 tumours are associated with alterations in the MET pathway while type 2 tumours are associated with activation of the NRF2-ARE pathway. On the basis of molecular features type 2 tumours may be sub-divided into at least 3 subtypes. Type 1 and type 2 tumours show differing immunohistochemical staining with type 1 tumours more frequently expressing cytokeratin 7 in comparison to type 2. Oncocytic papillary renal cell carcinoma is a category included in the fourth edition of the WHO renal tumour classification. While not fully characterized, this tumour is</td>
</tr>
</tbody>
</table>
Papillary RCC is associated with a more favourable outcome than clear cell renal cell carcinoma (ccRCC), collecting duct carcinoma and hereditary leiomyomatosis and renal cell carcinoma – associated renal cell carcinoma (HLRCC). Papillary subtyping is also of prognostic significance with type 1 tumours having a better prognosis than those with type 2 morphology.

S3.02 The histological WHO/ISUP tumour grade must be recorded.

| CS3.02a | Grade should be assigned based on the single high power field showing the greatest degree of nucleolar size and/or nuclear pleomorphism. This grading system is the World Health Organization/International Society of Urological Pathology (WHO/ISUP) grading system for renal cell carcinoma which is recommended in the 2016 WHO. This system has been validated as a prognostic parameter for clear cell and papillary renal cell carcinoma. It has not been validated for other types of renal cell carcinoma but may be used for descriptive purposes. The current recommendation is that chromophobe renal cell carcinoma is not graded.

S3.03 Evidence of sarcomatoid morphology must be recorded.

| CS3.03a | The presence of sarcomatoid morphology is seen in approximately 5% of renal cell carcinomas and is associated with a poor prognosis. Numerous studies have confirmed that sarcomatoid morphology may occur within any of the main subtypes of renal cell carcinoma and represents high grade disease. The five year survival for patients with sarcomatoid morphology is of the order of 15 to 22%. The outcome associated with sarcomatoid morphology is stage dependent. The presence of sarcomatoid morphology is incorporated into the WHO/ISUP grading system (Grade 4).

G3.01 The extent of any sarcomatoid component should be reported.

| CG3.01a | While there is no recommended or agreed method to calculate the sarcomatoid component at this stage. It has been suggested that the proportion of tumour showing sarcomatoid differentiation has prognostic significance. In particular, significantly different survivals were demonstrated for tumours divided with a cutpoint of 50% sarcomatoid component.

S3.04 Evidence of rhabdoid morphology must be recorded.
Similar to the sarcomatoid morphology, rhabdoid morphology is a feature of high grade disease.40,54 Tumours showing this phenotype resemble rhabdoid cells having bulky eosinophilic cytoplasm and an eccentric nucleus, often with a prominent nucleolus.9,10 Rhabdoid change is associated with a poor prognosis. It has been shown that 71\% of patients with rhabdoid morphology developed metastases with a mean follow-up of 4.5 months. Within 2 years it was also noted that 43\% of patients in this series had died, with a median survival rate of 8-31 months.40,54-56 In approximately 25\% of tumours with rhabdoid morphology, there is co-existing sarcomatoid carcinoma.10 The presence of rhabdoid morphology is incorporated into the WHO/ISUP grading system (Grade 4).40

The extent of any rhabdoid component should be reported.

There is currently no firm evidence to demonstrate that the volume of cells showing rhabdoid morphology is of prognostic significance.40

The presence of tumour necrosis has been shown to be a prognostic indicator for clear cell renal cell carcinoma and chromophobe renal cell carcinoma independent of tumour stage.35,40 Papillary renal cell carcinoma typically contains foci of necrosis, however the prognostic significance of this is, at best debated. At present, it is recommended that the presence of both macroscopic and microscopic (coagulative) necrosis be recorded.40 For patients who have undergone pre-surgical renal embolization, the degree of tumour-related necrosis cannot be assessed.

The extent of necrosis in cases of clear cell renal cell carcinoma should be reported.

The presence of tumour necrosis has been shown to be a prognostic indicator for clear cell renal cell carcinoma and has limited or no prognostic implications for papillary renal cell carcinoma. It has been shown that tumour necrosis >10\% is associated with a less favourable outcome, while for TNM stage 1 and 2 tumours a cutpoint of 20\% of the area of the tumour showing necrosis has been suggested to have prognostic significance.57 At present the prognostic significance of the amount of necrosis within a tumour is uncertain. Despite this it has been recommended that this be recorded as a percentage.40

The extent of tumour invasion must be recorded as “tumour limited to the kidney” or recorded for each of the following:
| CS3.06a | The identification of tumour directly infiltrating the renal sinus or large vessels has prognostic significance and this information is required for staging purposes.6,29 Careful gross examination of the specimen to assess large vessel invasion for example of the renal vein or beyond (if applicable) should be undertaken.

The renal sinus is an important pathway of spread of renal cell carcinoma and is often an under-recognized phenomenon.58 The renal sinus fat should be carefully assessed and generously sampled in order to detect renal sinus fat involvement. There is evolving literature suggesting that renal sinus fat involvement predicts a more aggressive outcome than peripheral perinephric fat invasion.59,60

When renal carcinoma involves the adrenal gland, it is important to document whether the involvement is contiguous spread of tumour or a separate (noncontiguous) nodule of carcinoma, the latter representing metastatic disease (pM1).29

Refer to Figure 1.

Extra-renal extension of tumour is a feature of pT3 and pT4 staging categories of the TNM staging classification. Extension of tumour beyond Gerota’s fascia is a feature of the pT4 staging category of the TNM staging system.29

The renal sinus is the compartment that lies between the renal parenchymal and the renal pelvis and calyces. This compartment contains varying amounts of fat and is rich in lymphatics. As a consequence infiltration of the renal sinus is the principal route for the extension of tumour beyond the kidney.56 Renal sinus invasion is present when there is tumour in contact with renal sinus fat, loose connective tissue clearly beyond the renal parenchyma of the renal sinus and in endothelial-lined spaces (with or without mural smooth muscle) within the renal sinus.56 This is most commonly seen in clear cell renal cell carcinoma and appears to be associated with tumour size. In particular it... |
has been noted that in clear cell renal cell carcinomas ≥ 7cm in diameter, renal sinus invasion was seen in > 90% of cases.59,60 Involvement of the renal sinus by tumour is a feature of pT3a tumour staging category of the TNM classification. It is likely that renal sinus invasion is preceded by involvement of renal sinus veins. It has also been shown that involvement of lymphatics within the renal sinus is of prognostic significance.61

If renal sinus invasion is seen on gross inspection of the specimen, then only one confirmatory section need be taken. If there is no evidence of renal sinus invasion grossly, then sampling should consist of at least three blocks of tissue.31

Adrenal gland: It is now recognized that direct spread of tumour to the ipsilateral adrenal gland has an outcome similar to pT4 tumour.62,63 In earlier TNM classifications this was included in the pT3a category, however, in view of these recent findings this was included as a feature of the pT4 category. In contrast a discrete, separate nodule in the adrenal gland is considered M1 disease.29

Other organs: The presence of metastatic disease is a feature of the pM1 staging category of the TNM staging classification.29

<table>
<thead>
<tr>
<th>G3.04</th>
<th>The presence or absence of tumour within the renal vein wall should be recorded.</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3.05</td>
<td>The presence or absence of lymphovascular invasion should be recorded.</td>
</tr>
<tr>
<td>CG3.05a</td>
<td>Lymphovascular invasion includes intratumoral, peritumoral and perirenal space invasion.31 In the renal sinus, it may be difficult to distinguish microscopic lymphovascular invasion from involvement of thin walled veins lacking smooth muscle. From a practical perspective, the presence of either pattern should be considered as renal sinus involvement (pT3a). Microvascular invasion has been shown to correlate with the development of metastases and with survival, independent of tumour size, primary tumour category, and grade.54 In both clear cell and papillary RCC, tumour spread is predominantly haematogenous via the sinus veins, renal vein and vena cava to the lung. Infiltration of the perirenal fat can result in retroperitoneal spread. Lymphatic spread to the nodes of the renal hilum may also occur and is more common in papillary RCC than with ccRCC.29</td>
</tr>
<tr>
<td>S3.07</td>
<td>Lymph node status must be recorded.</td>
</tr>
</tbody>
</table>
In earlier editions of the UICC/AJCC of the TNM classification, the number of lymph nodes infiltrated by tumour was used to differentiate the different pN categories. This has been simplified to now consist of presence or absence of lymph node involvement by tumour.10 It has, however been shown that survival does decrease with an increase in the number of lymph nodes involved (>4).65

The number of lymph nodes examined and the number of positive lymph nodes must be stated.

In the presence of positive lymph nodes, the presence or absence of extranodal extension should be recorded.

It has been shown that extra-nodal extension of metastatic tumour has prognostic significance independent of size of lymph node metastases and tumour grade.66

The status of surgical margins should be reported and if involved the specific margins must be reported.

Assessment of surgical margins is important in determining if residual tumour is present. In a partial nephrectomy specimen, the renal parenchymal margin should be inked and histologically assessed. Most partial nephrectomy specimens also contain a portion of perinephric fat overlying the tumour site. The perirenal fat margin should also be assessed. In situations where no perirenal fat is submitted, the renal capsular margin should be inked and examined histologically. In radical nephrectomy specimens the ureteric, major vascular (renal vein, renal artery) and soft tissue (Gerota’s fascia, renal sinus) margins should be examined and documented in the report.

Where contiguous tumour extension into the renal vein or inferior vena cava occurs involvement of the vascular margin should only be reported where there is tumour infiltration of the transected vessel wall. Tumour in the lumen of the vessel does not represent an involved margin.

For partial nephrectomy specimens, the distance from the tumour to the closest surgical margin should be recorded.

The nature of any co-existing renal pathology in non-neoplastic kidney must be reported.

It is important to recognize that medical kidney diseases may be present in nonneoplastic renal tissue in nephrectomy and nephroureterectomy specimens.67,68 Arterionephrosclerosis (or hypertensive nephropathy) and diabetic nephropathy are most frequently seen, and in two
<table>
<thead>
<tr>
<th>separate series medical renal disease was seen in 17% to 60% of cases. The findings of greater than 20% global glomerulosclerosis or advanced diffuse diabetic glomerulosclerosis are predictive of significant decline in renal function 6 months after radical nephrectomy.68 Evaluation for medical renal disease should be performed in each case; PAS and/or Jones methenamine silver stains should be applied if necessary. Consultation with a nephropathologist should be pursued as needed.</th>
</tr>
</thead>
</table>

G3.08 Any additional relevant comments should be recorded.
4 Ancillary studies findings

Ancillary studies may be used to determine lineage, clonality or disease classification or subclassification; as prognostic biomarkers; or to indicate the likelihood of patient response to specific biologic therapies.

Some studies, such as Her-2 testing, are required under the Pharmaceutical Benefits Scheme, to enable certain specific therapies to be prescribed.

<table>
<thead>
<tr>
<th>CG4.01</th>
<th>Whether or not ancillary tests are performed should be recorded and the results incorporated into the pathology report.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG4.01a</td>
<td>Ancillary studies are being increasingly utilized for subtyping of renal cell neoplasms. It is now recognized that Immunohistochemical assessment of tumours can be diagnostically helpful.</td>
</tr>
<tr>
<td>CG4.01b</td>
<td>Fluorescent in-situ hybridization (FISH) can be used to confirm a diagnosis of translocation carcinoma (MiT family tumour) and has been shown to be of utility in distinguishing oncocytoma from chromophobe renal cell carcinoma. Cytogenetics may be undertaken in some instances; however, this is not usually performed as part of the routine assessment of a renal tumour. It is now recognized that immunohistochemical assessment of tumours can be diagnostically helpful.</td>
</tr>
<tr>
<td>CG4.01c</td>
<td>There are currently no ancillary tests that are accepted as having prognostic significance for renal cell neoplasms.</td>
</tr>
</tbody>
</table>

69, 70, 71, 72

5 Synthesis and overview

Information that is synthesised from multiple modalities and therefore cannot reside solely in any one of the preceding chapters is described here.

For example, tumour stage is synthesised from multiple classes of information – clinical, macroscopic and microscopic.

By definition, synthetic elements are inferential rather than observational, often representing high-level information that is likely to form part of the report ‘Summary’ or ‘Diagnosis’ section in the final formatted report.

Overarching case comment is synthesis in narrative format. Although it may not necessarily be required in any given report, the provision of the facility for overarching commentary in a cancer report is essential.

<table>
<thead>
<tr>
<th>S5.01</th>
<th>The tumour stage must be recorded according to the AJCC TNM Classification 2016 (8th Edition).</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS5.01a</td>
<td>Refer to Figures 1-4 below.</td>
</tr>
</tbody>
</table>

Figure 1.

A: Diagram showing the renal sinus fat (S) and its rich venous system that envelops the collecting system. The renal capsule terminates (arrow) just inside the vestibule of the hilus.

B: A renal malignancy is constrained by the renal capsule (arrow), yet no fibrous capsule impedes its growth into the vascular tissue of the renal sinus (curved arrows).

Figure 2: T3a Invasion into perirenal and/or renal sinus fat but not beyond Gerota’s fascia.

Figure 3: T4 Invasion beyond Gerota’s fascia.

Figure 4: T4 Direct extension of tumour into ipsilateral adrenal gland.

S5.02 The year of publication and/or edition of the cancer staging system used in S5.01 must be included in the report.
The "Diagnostic summary" section of the final formatted report should include:

a. Specimen laterality (S2.03)
b. Operative procedure (S2.04)
c. Tumour type (S3.01)
d. Tumour grade (S3.02)
e. Tumour stage (S5.01)
f. Involvement of surgical margin (completeness of excision) (S3.08)

The reporting system must provide a field for free text or narrative in which the reporting pathologist can give overarching case comment, if required.

This field may be used, for example, to:

- document any noteworthy adverse gross and/or histological features
- explain the decision-making pathway, or any elements of clinicopathological ambiguity, or factors affecting diagnostic certainty, thereby allowing communication of diagnostic subtlety or nuance that is beyond synoptic capture
- document further consultation or results still pending.

Use of this field is at the discretion of the reporting pathologist.

The edition/version number of the RCPA protocol on which the report is based should be included on the final report.

For example, the pathology report may include the following wording at the end of the report: “the data fields within this formatted report are aligned with the criteria as set out in the RCPA document “ XXXXXXXXXXX” XXXX Edition dated XXXXXXXX”.
6 Structured checklist

The following checklist includes the standards and guidelines for this protocol which must be considered when reporting, in the simplest possible form. The summation of all “Standards” is equivalent to the “Minimum Data Set” for renal parenchymal malignancy. For emphasis, standards (mandatory elements) are formatted in bold font.

S6.01 The structured checklist provided may be modified as required but with the following restrictions:

a. All standards and their respective naming conventions, definitions and value lists must be adhered to.

b. Guidelines are not mandatory but are recommendations and where used, must follow the naming conventions, definitions and value lists given in the protocol.

G6.01 The order of information and design of the checklist may be varied according to the laboratory information system (LIS) capabilities and as described in *Functional Requirements for Structured Pathology Reporting of Cancer Protocols.*

CG6.01a Where the LIS allows dissociation between data entry and report format, the structured checklist is usually best formatted to follow pathologist workflow. In this situation, the elements of synthesis or conclusions are necessarily at the end. The report format is then optimised independently by the LIS.

CG6.01b Where the LIS does not allow dissociation between data entry and report format, (for example where only a single text field is provided for the report), pathologists may elect to create a checklist in the format of the final report. In this situation, communication with the clinician takes precedence and the checklist design is according to principles given in Chapter 7.

G6.02 Where the checklist is used as a report template (see G6.01), the principles in Chapter 7 and Appendix 2 apply.

CG6.02a All extraneous information, tick boxes and unused values should be deleted.

G6.03 Additional comment may be added to an individual response where necessary to describe any uncertainty or nuance in the selection of a prescribed response in the checklist. Additional comment is not required where the prescribed response is adequate.
S6.01 The structured checklist provided may be modified as required but with the following restrictions:

c. All standards and their respective naming conventions, definitions and value lists must be adhered to.

d. Guidelines are not mandatory but are recommendations and where used, must follow the naming conventions, definitions and value lists given in the protocol.

G6.01 The order of information and design of the checklist may be varied according to the laboratory information system (LIS) capabilities and as described in Functional Requirements for Structured Pathology Reporting of Cancer Protocols.73

CG6.01a Where the LIS allows dissociation between data entry and report format, the structured checklist is usually best formatted to follow pathologist workflow. In this situation, the elements of synthesis or conclusions are necessarily at the end. The report format is then optimised independently by the LIS.

CG6.01b Where the LIS does not allow dissociation between data entry and report format, (for example where only a single text field is provided for the report), pathologists may elect to create a checklist in the format of the final report. In this situation, communication with the clinician takes precedence and the checklist design is according to principles given in Chapter 7.

G6.02 Where the checklist is used as a report template (see G6.01), the principles in Chapter 7 and Appendix 2 apply.

CG6.02a All extraneous information, tick boxes and unused values should be deleted.

G6.03 Additional comment may be added to an individual response where necessary to describe any uncertainty or nuance in the selection of a prescribed response in the checklist. Additional comment is not required where the prescribed response is adequate.
Item descriptions in italics are conditional on previous responses.

Values in all caps are headings with sub values.

<table>
<thead>
<tr>
<th>S/G</th>
<th>Item description</th>
<th>Response type</th>
<th>Conditional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-analytical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1.01</td>
<td>Demographic information provided</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1.02</td>
<td>Information provided on request form</td>
<td>Not provided</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Text</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relevant past medical history</td>
<td>Text</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Predisposing factors (including genetic status)</td>
<td>Text</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-operative treatment</td>
<td>Multi selection value list (select all that apply):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tumour embolization</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cryoablation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Radio frequency ablation</td>
<td></td>
</tr>
<tr>
<td>Relevant family history</td>
<td>Text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent of disease</td>
<td>Text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous biopsy/surgical specimens</td>
<td>Text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical or differential diagnosis</td>
<td>Text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laterality</td>
<td>Single selection value list:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Left</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Right</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Other eg horseshoe kidney, specify</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nature of operation</td>
<td>Single selection value list:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Radical nephrectomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Simple nephrectomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Partial nephrectomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Other, specify</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operative findings</td>
<td>Text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical intent</td>
<td>Single selection value list:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Curative</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Palliative</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Tissue removed for research or other purposes | Single selection value list:
| | • No
| | • Yes, specify details of tissue removed |
| New primary lesion or recurrence | Single selection value list:
| | • New primary
| | • Recurrence – regional, *describe*
| | • Recurrence – distant, *describe* |

S1.03 Pathology accession number	Alpha-numeric
S1.04 Principal clinician	Text
G1.01 Comments	Text

Macroscopic findings

| S2.01 Specimen labelled as | Text |
| G2.01 Nature of specimen | Single selection value list:
| | • Fixed, *specify fixative*
| | • Fresh
| | AND
| | Single selection value list:
| | • Intact
| | • Morcellated |
| S2.02 | **Specimen laterality** | Not specified OR
Single selection value list:
- Left
- Right
- Other eg horseshoe kidney, *specify* |
|-------|------------------------|------------------|
| S2.03 | **Operative procedure** | Not specified OR
Single selection value list:
- Radical nephrectomy
- Simple nephrectomy
- Partial nephrectomy
- Other, *specify* |
|-------|------------------------|------------------|
| S2.04 | **Accompanying/ attached structures** | None submitted OR
Multi selection value list (select all that apply):
- Adrenal gland
- Lymph nodes, *provide details*
- Other organs, *provide details* |
| G2.02 | Tissue removed from specimen prior to submission | **Single selection value list:**
- Not stated
- No
- Yes, provide details |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G2.03</td>
<td>Kidney dimensions</td>
<td>Numeric: __x__x__mm</td>
</tr>
<tr>
<td>G2.04</td>
<td>Length of renal vein</td>
<td>Numeric: __mm</td>
</tr>
<tr>
<td></td>
<td>Length of renal artery</td>
<td>Numeric: __mm</td>
</tr>
<tr>
<td></td>
<td>Length of ureter</td>
<td>Numeric: __mm</td>
</tr>
<tr>
<td>G2.05</td>
<td>Specimen weight</td>
<td>Numeric: __g</td>
</tr>
</tbody>
</table>
| G2.06 | Adherence of renal capsule to visceral surface of perirenal fat | **Single selection value list:**
- Not identified
- Present |
| G2.07 | Cortical surface abnormalities | **Text** |
| G2.08 | Tumour site(s) | **Single selection value list:**
- Not provided |
<table>
<thead>
<tr>
<th>S2.05</th>
<th>Tumour focality</th>
<th>Single selection value list:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cannot be assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unifocal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multifocal, specify number of tumours (if possible)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S2.06</th>
<th>Maximum tumour dimension</th>
<th>Numeric: __mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td></td>
<td>If multiple tumours the maximum dimension of the largest five should be recorded.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S2.07</th>
<th>Macroscopic extent of invasion</th>
<th>Single selection value list:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tumour confined to kidney</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi selection value list (select all that</td>
</tr>
<tr>
<td>Block identification key</td>
<td>Text</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>S2.08 Block identification key</td>
<td>Text</td>
<td></td>
</tr>
</tbody>
</table>

Microscopic findings

<table>
<thead>
<tr>
<th>S3.01 Histological tumour type</th>
<th>Multi selection value list (select all that apply):</th>
</tr>
</thead>
</table>

- Tumour extends into perinephric tissues
- Tumour extends into renal sinus
- Tumour extends beyond Gerota’s fascia
- Tumour extends into major veins (renal vein or its segmental branches, inferior vena cava)
- Tumour extends into pelvicalyceal system
- Tumour extends into ipsilateral adrenal gland
 - Contiguous (pT4)
 - Noncontiguous (M1)
- Tumour extension into other organ(s)/structure(s), specify
<table>
<thead>
<tr>
<th></th>
<th>Clear cell renal cell carcinoma</th>
<th>Multilocular clear cell renal cell neoplasm of low malignant potential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Papillary renal cell carcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Type 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Type 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Oncocytic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o NOS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromophobe renal cell carcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Hybrid oncocytic chromophobe tumour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collecting duct carcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renal medullary carcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MiT family translocation renal cell carcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Xp11 translocation renal cell carcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o t(6;11) renal cell carcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Other, specify</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mucinous tubular and spindle cell carcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubulocystic renal cell carcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acquired cystic disease associated renal cell carcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clear cell papillary/tubulopapillary renal</td>
<td></td>
</tr>
<tr>
<td>S3.02 Histological tumour grade – WHO/ISUP</td>
<td>Single selection value list:</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>cell carcinoma</td>
<td>• Not applicable</td>
<td></td>
</tr>
<tr>
<td>• Hereditary leiomyomatosis and renal cell carcinoma-associated renal cell carcinoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Succinate dehydrogenase (SDH) deficient renal carcinoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Renal cell carcinoma, unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Other, specify</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Occasionally more than one histologic type of carcinoma occurs within the same kidney specimen. Each tumour type should be separately recorded.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Value list</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3.03</td>
<td>Sarcomatoid morphology</td>
<td>Single selection value list:</td>
<td>If present, consider reporting G3.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Not identified</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Present</td>
<td></td>
</tr>
<tr>
<td>G3.01</td>
<td>Extent of sarcomatoid component</td>
<td>Numeric: ___%</td>
<td></td>
</tr>
<tr>
<td>S3.04</td>
<td>Rhabdoid morphology</td>
<td>Single selection value list:</td>
<td>If present, consider reporting G3.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Not identified</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Present</td>
<td></td>
</tr>
<tr>
<td>G3.02</td>
<td>Extent of rhabdoid component</td>
<td>Numeric: ___%</td>
<td></td>
</tr>
<tr>
<td>S3.05</td>
<td>Necrosis</td>
<td>Single selection value list:</td>
<td>If present, consider reporting G3.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cannot be assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Not identified</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Present</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Microscopic coagulative necrosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Macroscopic tumour necrosis</td>
<td></td>
</tr>
<tr>
<td>G3.03</td>
<td>Extent of necrosis (Applicable to</td>
<td>Numeric: ___%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>clear cell renal cell carcinoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3.06</td>
<td>Extent of invasion</td>
<td>Single selection value list:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tumour limited to the kidney</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Tumour spread beyond the renal capsule</td>
<td>Single selection value list:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Cannot be assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Not identified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Present</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumour in renal sinus</th>
<th>Single selection value list:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cannot be assessed</td>
<td></td>
</tr>
<tr>
<td>• Not identified</td>
<td></td>
</tr>
<tr>
<td>• Present in fat</td>
<td></td>
</tr>
<tr>
<td>• Present in vascular spaces</td>
<td></td>
</tr>
<tr>
<td>• Present in fat and vascular spaces</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumour extends beyond Gerota’s fascia</th>
<th>Single selection value list:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cannot be assessed</td>
<td></td>
</tr>
<tr>
<td>• Not identified</td>
<td></td>
</tr>
<tr>
<td>• Present</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumour in major veins (renal vein or its segmental branches, inferior vena cava)</th>
<th>Single selection value list:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cannot be assessed</td>
<td></td>
</tr>
<tr>
<td>• Not identified</td>
<td></td>
</tr>
<tr>
<td>• Present</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumour in pelvicalyceal</th>
<th>Single selection value list:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>system</td>
<td>Tumour in adrenal gland</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Single selection value list:</td>
</tr>
<tr>
<td></td>
<td>• Cannot be assessed</td>
</tr>
<tr>
<td></td>
<td>• Not identified</td>
</tr>
<tr>
<td></td>
<td>• Present</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>S3.07</td>
<td>LYMPH NODE STATUS</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Number of lymph nodes examined</td>
</tr>
<tr>
<td></td>
<td>Number of positive lymph nodes</td>
</tr>
</tbody>
</table>
| | **G3.06** Extranodal extension | **Single selection value list:**
 - Cannot be assessed
 - Not identified
 - Present

| S3.08 | **Margin status** | **Single selection value list:**
 - Cannot be assessed
 - Not involved
 - Involved |
|-------|------------------|---|
| | **Site(s)** | **Multi selection value list (select all that apply):**
 - Renal parenchymal margin (partial nephrectomy only)
 - Renal capsular margin (partial nephrectomy only)
 - Perinephric fat margin (partial)

If involved specify the sites
If not involved, consider reporting G3.07
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3.07</td>
<td>Distance from tumour to closest surgical margin (Applicable to partial nephrectomy specimens only)</td>
<td>Numeric: ___mm</td>
</tr>
</tbody>
</table>

Co-existing pathology in non-neoplastic kidney

- Single selection value list:
 - None identified
 - Insufficient tissue for evaluation (<5 mm tissue adjacent to the tumour)

 OR

- Multi selection value list (select all that apply):
 - Glomerular disease, specify type
 - Tubulointerstitial disease, specify type
 - Vascular disease, specify type
 - Cyst(s), specify type
 - Tubular (papillary) adenoma(s)
 - Other, specify
Ancillary findings

<table>
<thead>
<tr>
<th>G3.08</th>
<th>Additional microscopic comment</th>
<th>Text</th>
</tr>
</thead>
</table>

Ancillary studies

G4.01 Ancillary studies

Single selection value list:
- Not performed
- Performed, specify tests and results

Synthesis and overview

S5.01 PATHOLOGICAL STAGING (AJCC 8TH EDITION)

TNM descriptors

Choose if applicable:
- m - multiple primary tumours at a single site
- r - recurrent tumours after a disease free period
- y - classification is performed during or following multimodality treatment

Primary tumour (T)

Single selection value list:
- TX Primary tumour cannot be assessed
- T0 No evidence of primary tumour
- T1 Tumour ≤ 7 cm in greatest dimension, limited to the kidney
- T1a Tumour ≤ 4 cm in greatest dimension, limited to the kidney
- T1b Tumour > 4 cm but ≤ 7 cm in greatest
<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>Tumour > 7 cm in greatest dimension, limited to the kidney</td>
</tr>
<tr>
<td>T2a</td>
<td>Tumour > 7 cm but ≤ 10 cm in greatest dimension, limited to the kidney</td>
</tr>
<tr>
<td>T2b</td>
<td>Tumour >10 cm, limited to the kidney</td>
</tr>
<tr>
<td>T3</td>
<td>Tumour extends into major veins or perinephric tissues, but not into the ipsilateral adrenal gland and not beyond Gerota’s fascia</td>
</tr>
<tr>
<td>T3a</td>
<td>Tumour extends into the renal vein or its segmental branches, or invades pelvicalyceal system, or invades perirenal and/or renal sinus fat but not beyond Gerota’s fascia</td>
</tr>
<tr>
<td>T3b</td>
<td>Tumour extends into the vena cava below the diaphragm</td>
</tr>
<tr>
<td>T3c</td>
<td>Tumour extends into the vena cava above the diaphragm or invades the wall of the vena cava</td>
</tr>
<tr>
<td>T4</td>
<td>Tumour invades beyond Gerota’s fascia (including contiguous extension into the ipsilateral adrenal gland)</td>
</tr>
<tr>
<td>Region</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Regional lymph nodes (N) | Single selection value list: | NX: Regional lymph nodes cannot be assessed.
N0: No regional lymph node metastasis
N1: Metastasis in regional lymph node(s) |
| Distant metastasis (M) | Single selection value list: | Not applicable
OR
M1: Distant metastasis |
| Year and/or edition of staging system | Numeric: year
AND/OR
Text: Edition eg 1st, 2nd etc |
| G5.01 Diagnostic summary | Text: | Include:
a. Specimen laterality (S2.03)
b. Operative procedure (S2.04)
c. Tumour type (S3.01)
d. Tumour grade (S3.02) |
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e.</td>
<td>Tumour stage (S5.01)</td>
</tr>
<tr>
<td>f.</td>
<td>Involvement of surgical margin (completeness of excision) (S3.08)</td>
</tr>
<tr>
<td>S5.03</td>
<td>Overarching comment</td>
</tr>
<tr>
<td>G5.02</td>
<td>Edition/version number of the RCPA protocol on which the report is based</td>
</tr>
</tbody>
</table>
7 Formatting of pathology reports

Good formatting of the pathology report is essential for optimising communication with the clinician, and will be an important contributor to the success of cancer reporting protocols. The report should be formatted to provide information clearly and unambiguously to the treating doctors, and should be organised with their use of the report in mind. In this sense, the report differs from the structured checklist, which is organised with the pathologists’ workflow as a priority.

Uniformity in the format as well as in the data items of cancer reports between laboratories makes it easier for treating doctors to understand the reports; it is therefore seen as an important element of the systematic reporting of cancer. For guidance on formatting pathology reports, please refer to Appendix 2.
Appendix 1 Pathology request information and surgical handling procedures

This appendix describes the information that should be collected before the pathology test. Some of this information can be provided on generic pathology request forms; any additional information required specifically for the reporting of renal cancer may be provided by the clinician on a separate request information sheet. An example request information sheet is included below. Elements which are in bold text are those which pathologists consider to be required information. Those in non-bold text are recommended.

Also included in this appendix are the procedures that are recommended before handover of specimens to the laboratory.

Patient information

➢ Adequate demographic and request information should be provided with the specimen.
 - Items relevant to cancer reporting protocols include:
 - patient name
 - date of birth
 - sex
 - identification and contact details of requesting doctor
 - date of request
 - Whether or not the patient identifies as Aboriginal and/or Torres Strait Islander. This is in support of a government initiative to monitor the health of indigenous Australians particularly in relation to cancer.

➢ The patient’s health identifiers should be provided.
 - The patient’s health identifiers may include the patient’s Medical Record Number as well as a national health number such as a patient’s Individual Healthcare Identifier (IHI) (Australia) or the National Healthcare Identifier (New Zealand).

➢ The Australian Healthcare identifiers i.e. Healthcare Provider Identifier - Individual (HPI-I) and Healthcare Provider Identifier - Organisation (HPI-O) should be use, where possible, to identify the requesting doctor.
Clinical Information

➢ Any relevant past medical history should be provided.

➢ Any relevant predisposing factors, including genetic status where appropriate, should be provided.

| ➢ If the patient has received any pre-operative treatment this should be recorded. |
| ➢ Pre-operative treatments may significantly alter the gross and microscopic appearance of the tumour. |

➢ Any relevant family history should be provided.

• Familial syndromes that predispose individuals to renal neoplasia are well recognized and several of these are associated with specific sub-types of RCC.

➢ Details of the extent of disease as determined from both clinical assessment and imaging studies should be provided.

• Relevant information as to the extent of disease obtained from examination of the patient and from imaging studies is necessary for the accurate staging of the tumour.

➢ The details of any previous biopsy or surgical specimens removed from the patient should be provided.

• The details of any tissue removed from the patient will provide information as to the extent of the tumour. Diagnostic information regarding the nature of the tumour as determined by biopsy, may inform handling of the specimen, especially if genetic studies are being considered. Comparison of the finding from previous biopsies/surgical specimens may alert the pathologist to a second, possibly occult, malignancy.

➢ The laterality of the lesion must be recorded.

• Laterality information is needed for identification purposes.

➢ The clinical diagnosis or differential diagnosis should be recorded.

• Providing the provisional clinical diagnosis or differential diagnosis improves clinicopathological correlation and improves diagnostic accuracy.

➢ The nature of the operation must be recorded.

• Whether the surgical procedure is a radical, total or partial nephrectomy must be stated as this will influence the
assessment of surgical margins. Specifically in the case of partial nephrectomy specimens it is important that the intra-renal surgical margin be carefully evaluated so as to ensure that no residual tumour is present in the remaining kidney.

• If the kidney has been removed laparoscopically and/or the specimen has been morcellated this must be stated.74

➢ The operative findings should be recorded.

• The operative findings may provide additional data that is necessary for accurate staging of the patient.

➢ The surgical intent should be stated.

• The surgeon should provide an indication as to whether the intent of the operation is palliative or curative. This will inform the assessment of surgical excision margins.

➢ If tissue has been removed from the specimen for research or other purposes, this must be stated and details as to nature of the tissue removed provided.

• Pathologic evaluation requires a detailed examination of the complete surgical specimen. If tissue has been removed prior to examination this could compromise diagnosis, staging and prognostic assessment.

➢ Record if this is a new primary cancer or a recurrence of a previous cancer, if known.

• The term recurrence defines the return, reappearance or metastasis of cancer (of the same histology) after a disease free period.

Recurrence should be classified as distant metastases or regional (local) recurrence.

Regional (local) recurrence refers to the recurrence of cancer cells at the same site as the original (primary) tumour or the regional lymph nodes.

Distant metastasis refers to the spread of cancer of the same histologic type as the original (primary) tumour to distant organs or distant lymph nodes.

• This information will provide an opportunity for previous reports to be reviewed during the reporting process, which may provide valuable information to the pathologist. This information also has implications for recording cancer incidence and evidence based research.
Surgical handling

➢ The specimen should be capable of orientation if the status of specific surgical margins is critical in determining the need for, or extent of, further surgery.

- Where there are no anatomical landmarks, specimen orientation may be indicated with marking sutures or other techniques. If a specimen is oriented, the orientation should be indicated on the specimen request form (this may be facilitated by the use of a diagram).
Example request information sheet

The above Request Information Sheet is published to the RCPA website.
Appendix 2 Guidelines for formatting of a pathology report

Layout

Headings and spaces should be used to indicate subsections of the report, and heading hierarchies should be used where the LIS allows it. Heading hierarchies may be defined by a combination of case, font size, style and, if necessary, indentation.

- Grouping like data elements under headings and using ‘white space’ assists in rapid transfer of information. Descriptive titles and headings should be consistent across the protocol, checklist and report.

When reporting on different tumour types, similar layout of headings and blocks of data should be used, and this layout should be maintained over time.

- Consistent positioning speeds data transfer and, over time, may reduce the need for field descriptions or headings, thus reducing unnecessary information or ‘clutter’.

Within any given subsection, information density should be optimised to assist in data assimilation and recall.

- Configuring reports in such a way that they ‘chunk’ data elements into a single unit will help to improve recall for the clinician.‘Clutter’ should be reduced to a minimum. Thus, information that is not part of the protocol (e.g. billing information, Snomed codes, etc) should not appear on the reports or should be minimized.
- Injudicious use of formatting elements (e.g. too much bold, underlining or use of footnotes) constitutes clutter and may distract the reader from the key information.

Where a structured report checklist is used as a template for the actual report, any values provided in the checklist but not applying to the case in question must be deleted from the formatted report.

Reports should be formatted with an understanding of the potential for the information to mutate or be degraded as the report is transferred from the LIS to other health information systems.

As a report is transferred between systems:

- text characteristics such as font type, size, bold, italics and colour are often lost
- tables are likely to be corrupted as vertical alignment of text is lost when fixed font widths of the LIS are rendered as proportional fonts on screen or in print
- spaces, tabs and blank lines may be stripped from the report, disrupting the formatting
- supplementary reports may merge into the initial report.
Appendix 3 Example of a pathology report

RADICAL NEPHRECTOMY STRUCTURED REPORT

CLINICAL INFORMATION RECEIVED

Nature of operation: Right, radical nephrectomy
Past medical history: Haematuria and abdominal pain
Clinical or differential diagnosis: Renal mass
Extent of disease: No known metastases
Pre-operative treatment: Nil
Operative findings: Clinical T1b, 2 nodes
Surgical intent: Curative
Tissue removed for research: No
New primary lesion or recurrence: New primary

MACROSCOPIC

Specimen labelled as: Right kidney
Nature of specimen: Fresh
Specimen laterality: Right
Operative procedure: Radical nephrectomy
Accompanying/ attached structures: Lymph nodes, 2 hilar
Adrenal gland, normal appearance
Tissue removed prior to submission: No
Kidney dimensions: 125 x 98 x 82 mm
Renal vein length: 10 mm
Renal artery length: 6 mm
Ureter length: 5 mm
Specimen weight: 312 g
Adherence of renal capsule to visceral surface of perirenal fat: Not identified
Cortical surface abnormalities: None
Tumour site: Lower pole
Tumour focality: Unifocal
Max tumour dimension: 60 mm
Macroscopic extent of invasion: Tumour confined to kidney
Appearance of cut surface of tumour: Solid with focal cyst formation; colour of cut surface is yellow.
Abnormal features of the kidney: Nil

Block identification key:
- A-E: tumour
- F-J: renal sinus
- K,L: capsule adjacent to tumour
- M,N: upper pole
- O: ureter
- P,Q: renal vein
- R: renal artery

Other macroscopic comment: Nil of significance

MICROSCOPIC

Tumour

- **Histological tumour type:** Clear cell renal cell carcinoma
- **Histological tumour grade – WHO/ISUP:** WHO/ISUP Grade 3 - Nucleoli conspicuous and eosinophilic at 100x magnification
- **Sarcomatoid morphology:** Not identified
- **Rhabdoid morphology:** Not identified
- **Necrosis:** Not identified

Extent of invasion

- **Tumour spread beyond the renal capsule:** Not identified
- **Tumour in renal sinus:** Present in fat
- **Tumour extends beyond Gerota’s fascia:** Not identified
- **Tumour in major veins (renal vein or its segmental branches, inferior vena cava):** Not identified
- **Tumour in adrenal gland:** Not identified
- **Tumour in other organs/structures:** Not identified
- **Tumour in renal vein wall:** Not identified
- **Tumour in pelvicalyceal system:** Not identified
- **Lymphovascular invasion:** Not identified

Lymph node status

- **Number of lymph nodes examined:** 2
- **Number of positive lymph nodes:** 1
- **Size of largest focus:** 2mm
- **Extranodal extension:** Not identified

Margin status: Not involved

Co-existing pathology non-neoplastic kidney: None identified

ANCILLARY TESTS

Not performed
Diagnostic Summary

Right radical nephrectomy:

Clear cell renal cell carcinoma in lower pole
WHO/ISUP grade 3
Margins clear
pT3a, N1, M0; (AJCC 8th edition, 2016)

Comment:
1. Tumour infiltrates the renal sinus, but is not present within the renal vein or intra-renal vasculature.
2. A single lymph node 0.9cm in diameter from the renal hilum contains a small focus of metastatic tumour.

Reported by Dr Bernard Beckstein

Authorised 4/9/2017
Appendix 4 World Health Organization (WHO) classification of renal neoplasia

- Clear cell renal cell carcinoma
- Multilocular clear cell renal cell neoplasm of low malignant potential
- Papillary renal cell carcinoma
 - Type 1
 - Type 2
 - Oncocytic
 - NOS
- Chromophobe renal cell carcinoma
 - Hybrid oncocytic chromophobe tumour
- Collecting duct carcinoma
- Renal medullary carcinoma
- MiT family translocation renal cell carcinoma
 - Xp11 translocation renal cell carcinoma
 - t(6;11) renal cell carcinoma
- Mucinous tubular and spindle cell carcinoma
- Tubulocystic renal cell carcinoma
- Acquired cystic disease associated renal cell carcinoma
- Clear cell papillary/tubulopapillary renal cell carcinoma
- Hereditary leiomyomatosis and renal cell carcinoma-associated renal cell carcinoma
- Succinate dehydrogenase (SDH) deficient renal carcinoma
- Renal cell carcinoma, unclassified

© WHO/International Agency for Research on Cancer (IARC). Reproduced with permission
References

RCPA (Royal College of Pathologists of Australasia (2009). *Guidelines for Authors of Structured Cancer Pathology Reporting Protocols*. RCPA, Surry Hills NSW.

Rabban JT, Meng MV, Yeh B, Koppie T, Ferrell L and Stoller ML (2001). Kidney morcellation in laparoscopic nephrectomy for tumor: